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Figure 1: The same attention-based policy can control both a bipedal (left) and a quadrupedal (right) body plan. Video available

at https://www.youtube.com/watch?v=gmgyFIJz9ZY.
Abstract

This paper introduces an attention-based approach to muscle-driven
locomotion that allows a single controller to adapt to different body
plans. We consider physically simulated agents with bodies modeled
as deformable meshes and controllable fibers that act as muscles.
Vertices serve as addressable memory, defining keys and values,
while muscles generate multi-head queries to extract relevant in-
formation from vertex states and produce actuation signals. A key
characteristic of our approach is that all muscle fibers share the
same attention-based control policy. This enables locomotion con-
trollers that accommodate any number of inputs and outputs while
also remaining permutation invariant. We demonstrate the effec-
tiveness of our method by successfully controlling both bipedal and
quadrupedal body plans using the same control policy.
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1 Introduction

Control policies for locomotion are typically designed for a specific
morphology with a rigid input-output structure. Modifications such
as reordering inputs and outputs or adding and removing elements
can render a policy unusable. In contrast, biological processes like
metamorphosis and regeneration demonstrate how functionality
and memory can persist through major structural transformations
[1]. During metamorphosis, the brain and body are extensively
rebuilt, yet memories persist and are remapped to a completely new
sensorimotor configuration [2]. This raises fundamental questions
about how past experiences are compressed into a form that can
survive radical transformations and be reinstantiated in a new body.

As a step towards addressing this challenge in the context of
muscle-driven locomotion, we propose an approach that adapts
to different body plans by using a shared policy across all muscle
actuators. We consider agents modeled as deformable meshes with
controllable fibers, an approach that has proven effective for muscle-
based locomotion [10, 19]. In contrast to prior control approaches
that rely on neural networks with fixed input-output structures, our
method supports a variable number of inputs and outputs while re-
maining permutation invariant. This property, sometimes referred
to as structural flexibility, has been highlighted as a key enabler of
adaptability across environments in general reinforcement learning
settings [15, 22].
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In the context of locomotion specifically, there is growing inter-
est in morphology-adaptive control and the joint optimization of
morphology and control [4, 6, 7, 9, 12, 14, 16, 21, 24-26], highlight-
ing the importance of developing controllers that can generalize
across different body plans. One of the main goals of our work is to
explore models that can accommodate significantly different mor-
phologies while keeping architectural complexity low. Attention
mechanisms are particularly well suited for this task, as they natu-
rally handle a variable number of inputs and enable permutation
invariance.

While attention mechanisms have gained widespread adoption
due to the success of transformers in language models [23], the lan-
guage model perspective, which assumes a sequential processing
order, is not the most relevant in our setting. Unlike attention-based
approaches in language models, where the context expands as new
tokens are generated, our model maintains a fixed temporal con-
text. Decisions at each time step depend only on the current vertex
positions and velocities. The primary challenge is not handling ex-
panding temporal dependencies, but rather integrating information
across a variable number of spatially distributed nodes.

A more relevant analogy to early work in attention models can
be found in Neural Turing Machines (NTMs) [3]. NTMs use an
attention mechanism to selectively read from an addressable mem-
ory, and then write back to it after processing it. While the specific
architectural details differ, this provides a valuable mental model for
our approach: vertices act as addressable memory, while muscles
act as write heads, influencing the updated vertex states.

2 Morphology-Specific Control

This work uses the open-source project Algovivo [17], which im-
plements an energy-based approach for muscle-driven locomotion,
where system dynamics are governed by the minimization of six dif-
ferentiable functions. Muscle fibers embedded in a deformable mesh
act as agents seeking states of minimal elastic potential energy, and
locomotion is achieved by reshaping their energy landscape [18].

Muscle fibers are modeled as springs with parameters from
Hookean elasticity, including rest length [y and stiffness k, with
modifications to accommodate actuation. A scaling factor a, where
a < 1, modulates the effective rest length, enabling the muscle to
contract relative to its original rest length. The muscle’s current
length [ depends on the vertex positions p and the energy of the
muscle is defined as a function of p and a:
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Changes in a over time generate different locomotion patterns,
as muscles continuously adjust toward the shifting local minima
defined by a. However, even when a is fixed, the muscle length
does not necessarily settle at its effective rest length aly, since the
positions of the connected vertices affect other energy terms of
the system. The deformable mesh is composed of neo-Hookean
elastic triangles, which resist large deformations and contribute
to shape recovery, providing stability that springs alone cannot
achieve [20]. This competition between energy terms determines
the final configuration after energy minimization.
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A locomotion control policy changes a over time based on sen-
sory input. Prior work commonly uses multilayer perceptrons
(MLPs) to map vertex positions and velocities (which can be inter-
preted as proprioceptive and kinesthetic signals) to muscle actua-
tion signals [19]. This method has been effective for locomotion and
commonly includes a frame projection step to enforce translation
and rotation invariance, as illustrated in Figure 2.

Figure 2: Mesh in world space (left) and after projection onto
the agent’s local coordinate frame (right). In the morphology-
specific approach, an MLP maps vertex positions and veloci-
ties to muscle actuation signals. Vertex positions and veloci-
ties are projected onto a local frame before being sent to the
MLP to enforce translation and rotation invariance. The local
frame is defined by two reference vertices: a center vertex
and a forward vertex, which determine the forward direction.
The up direction is computed as the orthogonal direction,
counterclockwise from the forward direction. Muscle con-
trol signals reshape the energy landscape by adjusting the
effective rest length of each muscle, generating locomotion
patterns as muscles continuously adjust toward the shifting
local minima defined by the energy function.

3 Morphology-Adaptive Attention Mechanism

In an MLP, inputs and outputs are fixed in number and order, mean-
ing each connection of the network is set to work with a very spe-
cific input-output structure, making the policy unusable if vertices
or muscles are added, removed, or reordered. To enable adaptabil-
ity to varying numbers of inputs, we use an attention mechanism
where inputs are accessed through keys rather than a fixed or-
dering. To enable adaptability to varying numbers of outputs, we
use a shared policy across all contractile fibers, allowing the same
controller to actuate any number of muscles.

Each vertex has a position and velocity that evolve over time
during the simulation, which serve as the values in the attention
mechanism. To ensure translation and rotation invariance, we also
normalize these quantities using a local frame before passing them
through the attention mechanism.

The key of each vertex is defined by its position in the rest
pose, which remains constant over time and is determined by the
body plan. While vertices themselves do not inherently have a
rest location, muscles have a rest length (used to compute the
Hookean elastic energy) and triangles have a rest shape (used to
compute the neo-Hookean elastic energy). In practice, these rest
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Figure 3: Attention mechanism for muscle control. Each muscle generates a multi-head query g, which is used to compute a
weighted sum o’ of vertex values. The figure illustrates an example with 3 attention heads, 3 vertices, a key size of 2, and a
value size of 4 per vertex. The resulting weighted values are processed by an MLP, which updates the actuation signal at each

time step as as41 = a; + Aa.

quantities are derived from a rest pose defined by vertex positions
[20]. Translating or rotating the rest pose does not alter the rest
lengths of muscles or the rest shapes of triangles. To ensure the keys
remain consistent under these transformations, we also normalize
vertex positions in the rest pose using a local frame.

Each muscle is identified by its position in the rest pose, com-
puted as the midpoint of the two vertices it connects (Figure 4). This
positional reference serves as the muscle identifier, conceptually
similar to a key. However, since this identifier is used to query
the vertex-based memory, it is first transformed by an MLP into a
multi-head query for the attention mechanism.

To better understand how muscles extract relevant information
from the mesh, we break down the computations performed per
muscle shown in Figure 3. Consider a multi-head query g € RE*dk,
generated by a muscle, where H is the number of heads and dy. is
the key size. Consider vertex keys k € RV*dk and vertex values
v € RVXdU, where V is the number of vertices and d,, is the value
size. In our particular case, d, = 4 (position and velocity in 2D) and
di = 2 (location in the 2D rest pose). For each head, the attention
mechanism computes weights w € RV based on the similarity of
the keys and the query. First, we compute unnormalized weights

Figure 4: Rest pose in world space (left) and after projection
onto the agent’s local coordinate frame, with muscle nodes
shown (right). Each muscle is identified by its position in
the rest pose (pink nodes), computed as the midpoint of the
two vertices it connects. This positional reference serves as
the muscle identifier, which is transformed by an MLP into a
multi-head query. The query is then used to extract relevant
information from the vertex states via attention.
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u € RT*XV where the i-th unnormalized weight of the k-th head
(ug;) is the dot product of the k-th head of the query (gx) and the
key of the i-th vertex (k;):

d
Uki = Z i jkij ()
J

The unnormalized weights u are normalized using a softmax
function to obtain the final weights w, and then used to compute
o', the weighted sum of the values:

v
wy = softmax( ug ), z;,’C = Z Wi 0 (3)
—— ~—— ~—— i —
RV RV Rd4o Rdo

At each time step, each muscle computes its own o’ € RH xdy
based on the current vertex positions and velocities. Then, v’ is
passed through an MLP to produce the final muscle actuation sig-
nal. As in prior work [19], instead of directly outputting a, the
MLP outputs Aa, which updates the muscle control parameter for
the next simulation step as a;+1 = a; + Aa (Figure 3). This up-
date continuously reshapes the system’s energy landscape, driving
locomotion.

4 Bipedal and Quadrupedal Locomotion

To test the effectiveness of our method, we trained a single policy
for both bipedal and quadrupedal locomotion (Figure 1). Our focus
is not on learning locomotion from scratch but on unifying different
body plans and their locomotion behaviors into a single policy using
attention-based control. We used reference trajectories generated by
previously trained MLP policies, available from prior work [17, 18],
each trained for a specific morphology. The bipedal body plan
consists of 28 vertices, 19 muscle fibers and 35 triangles, while the
quadrupedal body plan consists of 62 vertices, 38 muscle fibers and
95 triangles.

Training was performed using the Adam optimizer [8] with a
standard supervised learning loop in PyTorch [13]. Figure 5 shows
one training run using 150 steps of bipedal locomotion and 150 steps
of quadrupedal locomotion as training data. While this procedure
can produce behavior similar to that of the reference policies, we
observed occasional deviations from the original behavior when
running the trained policy. These deviations are likely due to the
reliance on a single ideal trajectory during training, which makes
the policy brittle when encountering states that differ significantly
from those seen during training. We found that augmenting the
training set with new reference trajectories initialized from the
problematic states improved the policy in subsequent training runs.

5 Discussion and Future Work

Our approach is both modular and decentralized, as muscle fibers
act as reusable, independent processing units that share the same
control policy. Unlike MLP-based policies, which require a prede-
fined number of outputs and rely on a central hidden layer to gener-
ate all muscle actuation signals, our method assigns each muscle its
own attention-based processing mechanism. This design enables
the controller to adapt to different body plans, accommodating any
number of inputs and outputs.
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Figure 5: Training progress using 150 steps of bipedal lo-
comotion and 150 steps of quadrupedal locomotion, each
taken from a single ideal reference trajectory. While this
simple setup illustrates the attention-based policy’s ability
to imitate behavior across different body plans, additional
trajectories initialized from different states are often needed
to improve robustness.

Modular and decentralized control is often associated with local
interactions, where each module processes only nearby elements
within a limited sensory range [7, 12, 14]. However, prior work has
also demonstrated modular control of soft robots without explicit
inter-module communication [16]. Our approach lies at the opposite
end of this spectrum, where each module has a broad sensory
range, considering all vertices in the mesh as potential inputs and
selectively extracting relevant vertex states through attention.

The meshes used in our experiments define two reference ver-
tices to establish a local coordinate system, ensuring translation and
rotation invariance. While this choice was made for consistency
with prior work [19], it is not a fundamental requirement, and al-
ternative sensory input representations could be explored. The key
aspect of our approach is that muscles extract relevant information
through attention over a key-value format of the sensory input.

Future work could explore localized attention, where elements
process only a subset of mesh elements and propagate information
iteratively. Since our approach accommodates variable input sizes,
it naturally supports arbitrary meshes, where elements can vary in
both size and connectivity, each having a non-uniform number of
neighbors.

Many modular and decentralized control approaches rely on
regular grids, such as neural cellular automata and voxel-based soft
robots [5, 11, 12]. These approaches have produced interesting re-
sults, and the simplicity of regular grids, along with the availability
of convolution operators in modern software libraries, makes them
easy to implement and experiment with.

To further advance the field, we see great potential in exploring
more irregular representations, such as the mesh-based structures
considered in this work. Meshes allow for coarser models that
capture essential morphological features with fewer elements while
also being able to represent regular grids as a special case.
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Many distributed and decentralized control approaches draw
inspiration from biological processes, such as morphogenesis and
other collective cell behaviors. While regular grids sometimes offer
computational convenience, they are a significant abstraction away
from the irregular interactions seen in cell collectives. Non-uniform
spatial arrangements and attention mechanisms are particularly
well suited for modeling such irregularities.

This work represents a step in that direction. We trained a mini-
mal architecture to demonstrate that attention-based control can
achieve similar performance as MLP policies for two distinct body
plans. While our current setup is limited to 2D environments and
supervised training based on reference trajectories, the architecture
can be extended to 3D environments using tetrahedral meshes and
adapted to training loops that optimize directly for locomotion by
continuously interacting with the environment. This could help ad-
dress the limitations of imitation-based training, which may cause
the policy to fail when the agent encounters previously unseen
states, unless additional data is introduced, as discussed in Section
4. We see this work as a starting point for future developments, in-
cluding broader morphological generalization, alternative training
methods, and architectural enhancements.
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